HALFEN HLB LOOP BOX
Technical Product Information
Under the Leviat brand, we are uniting the expertise, skills and resources of HALFEN and its sister companies to create a world leader in fixing, connecting and anchoring technology.

The products you know and trust, including HALFEN HLB Loop box, will remain an integral part of Leviat’s comprehensive brand and product portfolio. As Leviat, we can offer you an extended range of specialist products and services, greater technical expertise, a larger and more agile supply chain and better, faster innovation.

By bringing together CRH’s construction accessories family as one global organisation, we are better equipped to meet the needs of our customers, and the demands of construction projects, of any scale, anywhere in the world.

This is an exciting change. Join us on our journey.

Read more about Leviat at Leviat.com
Our product brands include:

- Ancon®
- HALFEN
- PLAKA

60 locations

sales in 30+ countries

3000 people worldwide

Leviat.com
HALFEN HLB LOOP BOX

Introduction

Economical solutions with HALFEN HLB Loop Box

- Sturdy steel case - ensures stability when nailing to the formwork and during concreting
- Solid steel cover - the HLB Loop Box element can be glued to steel formwork
- Pre-punched nail holes for easy fixing to the formwork
- The loops pop up automatically - time saving: no rebending is required
- Flexible wire loops can spring back during setting up - closing a gap can be easily carried out
- Officially approved system - guarantees reliability of the design
- Ideal product dimensions, the HLB Loop Box elements are packed in standard euro-pallet dimensions - advantageous for logistics and storage
- HLB Spacer (foam recess body) used as modules for interspaces - can be simply cut to length using a common cutter or sharp knife and allow flexible and quick assembly
HALFEN HLB LOOP BOX

Product overview

HLB Loop Box - The Complete Range

HLB M
Multi Loop Box
→ Pages 4-9
for load bearing or constructive junctions

HLB M- 50

HLB M- 20

HLB M-100

HLB S
Single Loop Box
→ Page 10
for constructive junctions

HLB M- 50/250
→ Pages 6-7

HLB M- 20/250 + **HLB M-100/250**
→ Pages 8-9

HLB Spacer
→ Page 11

HLB Application
→ Pages 12-15

HLB Mix
→ Page 16

© 2020 · HLB 16E · www.halfen.com
HALFEN HLB LOOP BOX

Product description

HLB M Multi Loop Box
for the junction between precast concrete elements under transverse loads perpendicular and parallel to the joint

Materials:
- Casing: steel, galvanised; profiled back, with pre-punched nail holes; cover with pre-punched opening for removing after striking the formwork
- Steel wire loop: high strength, galvanised; steel ferrule

Standard gap width: 20 mm
Installation dimensions → Pages 14-15
Directives for installation → Pages 14-15
Notes for the constructive load bearing behaviour → Pages 12-13

HLB M-50/250 officially approved by DIBt: see Pages 6-7
HLB M-20/250 in combination with HLB M-100/250 officially approved by DIBt: see Pages 8-9
HALFEN HLB LOOP BOX

Product description

HLB M Multi Loop Box

Type selection

Dimensions
HLB M- 20; M- 50; M-100

Order example for HALFEN Loop Box:

Product group - Type
Loop Box size
Nominal spacing of the loops [mm]

Product range HALFEN HLB M Multi Loop Box

<table>
<thead>
<tr>
<th>Item name</th>
<th>Article no.</th>
<th>No. of loops</th>
<th>s [mm]</th>
<th>a1 [mm]</th>
<th>a2 [mm]</th>
<th>Weight [kg]</th>
<th>Packing unit [pieces]</th>
</tr>
</thead>
<tbody>
<tr>
<td>HLB M-20/300</td>
<td>0058.030-00003</td>
<td>4</td>
<td>300</td>
<td>175</td>
<td>105</td>
<td>1.5</td>
<td>80</td>
</tr>
<tr>
<td>HLB M-20/250</td>
<td>0058.030-00004</td>
<td>5</td>
<td>249</td>
<td>133</td>
<td>51</td>
<td>1.7</td>
<td>80</td>
</tr>
<tr>
<td>HLB M-20/200</td>
<td>0058.030-00005</td>
<td>6</td>
<td>199</td>
<td>133</td>
<td>52</td>
<td>1.8</td>
<td>80</td>
</tr>
<tr>
<td>HLB M-20/150</td>
<td>0058.030-00006</td>
<td>8</td>
<td>143</td>
<td>133</td>
<td>46</td>
<td>2.1</td>
<td>80</td>
</tr>
<tr>
<td>HLB M-50/300</td>
<td>0058.040-00003</td>
<td>4</td>
<td>300</td>
<td>175</td>
<td>105</td>
<td>1.8</td>
<td>60</td>
</tr>
<tr>
<td>HLB M-50/250</td>
<td>0058.040-00004</td>
<td>5</td>
<td>249</td>
<td>133</td>
<td>51</td>
<td>1.9</td>
<td>60</td>
</tr>
<tr>
<td>HLB M-50/200</td>
<td>0058.040-00005</td>
<td>6</td>
<td>199</td>
<td>133</td>
<td>52</td>
<td>2.1</td>
<td>60</td>
</tr>
<tr>
<td>HLB M-50/150</td>
<td>0058.040-00006</td>
<td>8</td>
<td>143</td>
<td>133</td>
<td>46</td>
<td>2.4</td>
<td>60</td>
</tr>
<tr>
<td>HLB M-100/300</td>
<td>0058.050-00003</td>
<td>4</td>
<td>300</td>
<td>175</td>
<td>105</td>
<td>2.5</td>
<td>40</td>
</tr>
<tr>
<td>HLB M-100/250</td>
<td>0058.050-00004</td>
<td>5</td>
<td>249</td>
<td>133</td>
<td>51</td>
<td>2.6</td>
<td>40</td>
</tr>
<tr>
<td>HLB M-100/200</td>
<td>0058.050-00005</td>
<td>6</td>
<td>199</td>
<td>133</td>
<td>52</td>
<td>2.8</td>
<td>40</td>
</tr>
<tr>
<td>HLB M-100/150</td>
<td>0058.050-00006</td>
<td>8</td>
<td>143</td>
<td>133</td>
<td>46</td>
<td>3.0</td>
<td>40</td>
</tr>
</tbody>
</table>
HALFEN HLB LOOP BOX

Product description

HLB M 50 Multi Loop Box

Combination of HLB M- 50/250 on both sides - officially approved, approval DIBt No. Z-21.8-1869
for the junction between precast concrete elements under transverse loads perpendicular and parallel to the joint

Standard gap width: 20 mm
Installation dimensions → Page 7
Directives for installation → Pages 14-15

Application examples of the combination HLB M- 50/250 + HLB M- 50/250:

Butt junction wall to wall
Junction wall to column

Order example for HALFEN Loop Box:

HLB M- 50 / 250

Product group - Type
Loop Box size
Nominal spacing of the loops [mm]

Joint filling with HLB Mix → Page 16,
Joint details → Page 15
Load capacity for applications according to EC 2

The official approval applies for construction elements under predominantly static loads. If imposed deformations due to e.g. temperature changes or outdoor weathering can not be excluded, the crack width of the junction has to be restricted to \(w_k \leq 0.3 \text{ mm} \). Transverse loads do not lead to an additional crack opening. The product is not designed for regular tension loads. To include the expansion forces arising in the joint, an exterior tensional force has to be taken into consideration according to DAfStb booklet 525, which is at least 1.5 times the shear force to be transferred perpendicularly over the joint. The official approval is to be observed.

\[
VR_{d, II} [\text{kN/m}] = -0.45 \cdot VR_{d, \perp} [%] + 45
\]

<table>
<thead>
<tr>
<th>Wall thickness [cm]</th>
<th>HLB M-50/250</th>
<th>HLB M-50/250</th>
<th>C30/37</th>
<th>C35/45</th>
<th>C40/50</th>
<th>C45/55</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥ 14</td>
<td>45.0 *</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Moreover, no further limitation of the absorbable shear stresses in the joint of diaphragms according to EC2, chapter 10.9.3 (12) is required.

© 2020 · HLB 16-E · www.halfen.com
HALFEN HLB LOOP BOX

Product description

HLB M 20 and HLB M 100 Multi Loop Box

Combination of HLB M-20/250 + HLB M-100/250 - officially approved, approval DIBt No. Z-21.8-1871 for the junction between precast concrete elements under transverse loads perpendicular and parallel to the joint

Application examples of the combination HLB M-20/250 + HLB M-100/250:

- T-shaped wall junction
- Butt junction wall to wall
- Wall corner junction

Standard gap width: 20 mm

Installations dimensions → Page 9

Directives for installation → Pages 14-15

Order examples for HALFEN Loop Box:

- HLB M-100 / 250
- HLB M-20 / 250

Joint filling with HLB Mix → Page 16,
Joint details → Page 15
Load capacity for applications according to EC 2

The official approval applies for construction elements under predominantly static loads. If imposed deformations due to e.g. temperature changes or outdoor weathering can not be excluded, the crack width of the joint has to be restricted to $w_k \leq 0.3 \text{ mm}$. Transverse loads do not lead to an additional crack opening. The product is not designed for regular tension loads. To include the expansion forces arising in the joint, an exterior tensional force has to be taken into consideration according to DAfStb booklet 525, which is at least 1.5 times the shear force to be transferred perpendicularly over the joint. The official approval is to be observed.

Design value of the transverse load capacity parallel to the joint (plane of the wall) $V_{rd,\parallel}$ [kN/m]

<table>
<thead>
<tr>
<th>Wall thickness [cm]</th>
<th>HLB M-20/250</th>
<th>HLB M-100/250</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥ 14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>8.8</td>
<td>10.0</td>
</tr>
<tr>
<td>16</td>
<td>10.2</td>
<td>11.6</td>
</tr>
<tr>
<td>17</td>
<td>11.7</td>
<td>13.3</td>
</tr>
<tr>
<td>18</td>
<td>13.2</td>
<td>15.0</td>
</tr>
<tr>
<td>19</td>
<td>14.8</td>
<td>16.9</td>
</tr>
<tr>
<td>20</td>
<td>16.4</td>
<td>18.7</td>
</tr>
<tr>
<td>21</td>
<td>18.1</td>
<td>20.6</td>
</tr>
<tr>
<td>22</td>
<td>19.9</td>
<td>22.6</td>
</tr>
<tr>
<td>23</td>
<td>21.6</td>
<td>24.7</td>
</tr>
<tr>
<td>24</td>
<td>23.5</td>
<td>26.8</td>
</tr>
<tr>
<td>25</td>
<td>25.4</td>
<td>28.9</td>
</tr>
<tr>
<td>≥ 26</td>
<td>27.3</td>
<td>31.1</td>
</tr>
</tbody>
</table>

* Moreover, no further limitation of the absorbable shear stresses in the joint of diaphragms according to EC2, chapter 10.9.3 (12) is required.

Design value of the transverse load capacity perpendicular to the joint (plane of the wall) $V_{rd,\perp}$ [kN/m] (Table 'C')

<table>
<thead>
<tr>
<th>Wall thickness [cm]</th>
<th>HLB M-20/250</th>
<th>HLB M-100/250</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>8.8</td>
<td>10.0</td>
</tr>
<tr>
<td>15</td>
<td>10.2</td>
<td>11.6</td>
</tr>
<tr>
<td>16</td>
<td>11.7</td>
<td>13.3</td>
</tr>
<tr>
<td>17</td>
<td>13.2</td>
<td>15.0</td>
</tr>
<tr>
<td>18</td>
<td>14.8</td>
<td>16.9</td>
</tr>
<tr>
<td>19</td>
<td>16.4</td>
<td>18.7</td>
</tr>
<tr>
<td>20</td>
<td>18.1</td>
<td>20.6</td>
</tr>
<tr>
<td>21</td>
<td>19.9</td>
<td>22.6</td>
</tr>
<tr>
<td>22</td>
<td>21.6</td>
<td>24.7</td>
</tr>
<tr>
<td>23</td>
<td>23.5</td>
<td>26.8</td>
</tr>
<tr>
<td>24</td>
<td>25.4</td>
<td>28.9</td>
</tr>
<tr>
<td>25</td>
<td>27.3</td>
<td>31.1</td>
</tr>
<tr>
<td>≥ 26</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Moreover, no further limitation of the absorbable shear stresses in the joint of diaphragms according to EC2, chapter 10.9.3 (12) is required.

Interaction diagram of the design values of the transverse load capacities parallel and perpendicular to the joint

Equation: $V_{rd,\parallel}$ [kN/m] = 0.5 · $V_{rd,\perp}$ [%] + 50
HALFEN HLB LOOP BOX
Product description

HLB S Single Loop Box

for constructive junctions between precast concrete elements

Materials:
Casing: Steel, galvanised; profiled back, with pre-punched nail holes; lid with pre-punched opening for removing after striking the formwork
Steel wire loop: High strength, galvanised; steel ferrule

Product range HALFEN HLB S Single Loop Box

<table>
<thead>
<tr>
<th>Item name</th>
<th>Article no.</th>
<th>No. of loops</th>
<th>Loop length l [mm]</th>
<th>Clip colour</th>
<th>Weight [kg]</th>
<th>Packing unit [pieces]</th>
</tr>
</thead>
<tbody>
<tr>
<td>HLB S-80</td>
<td>0058.010-00001</td>
<td>1</td>
<td>76</td>
<td>black</td>
<td>0.3</td>
<td>500</td>
</tr>
<tr>
<td>HLB S-100</td>
<td>0058.010-00002</td>
<td>1</td>
<td>96</td>
<td>white</td>
<td>0.3</td>
<td>500</td>
</tr>
<tr>
<td>HLB S-120</td>
<td>0058.010-00003</td>
<td>1</td>
<td>116</td>
<td>blue</td>
<td>0.3</td>
<td>500</td>
</tr>
</tbody>
</table>

Order example for HALFEN Loop Box:

Butt junction wall to wall

Butt junction wall to wall, with filling channel only on one side of the joint

Junction wall to column

Joint filling with HLB Mix → see Page 16,
Joint details → Page 15

Standard gap width: 20 mm
Installation dimensions → Pages 14-15
Directives for installation → Pages 14-15
Notes for the constructive load bearing behaviour → Pages 12-13

Installation with timber batten (by contractor)
HALFEN HLB LOOP BOX

Application

HLB Spacer for Loop Box

Economical and time saving method for producing a continuous joint filling channel, which is requested, if HALFEN Multi Loop Box elements are applied with interspacing for length adaption.

Material: foam profile strip, dimensionally stable

Application:

• Select the HLB Spacer type suitable to the Loop Box
• Cut to the required length using a common cutter or sharp knife
• Attach the HLB Spacer to the formwork using nails, glue or adhesive tape

<table>
<thead>
<tr>
<th>HLB Spacer Type</th>
<th>Article no.</th>
<th>fits to Loop Box</th>
<th>Packing unit (pieces)</th>
<th>Length (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HLB Spacer-20</td>
<td>0058.070-00001</td>
<td>HLB M-20</td>
<td>80</td>
<td>1000</td>
</tr>
<tr>
<td>HLB Spacer-50</td>
<td>0058.070-00002</td>
<td>HLB M-50</td>
<td>60</td>
<td>1000</td>
</tr>
<tr>
<td>HLB Spacer-100</td>
<td>0058.070-00003</td>
<td>HLB M-100</td>
<td>40</td>
<td>1000</td>
</tr>
</tbody>
</table>

Order example HLB Spacer:

Product group - Type
fits to Loop Box HLB M size
1. Transfer of tension loads perpendicular to the joint

The transfer of tension loads results from the overlap of the wire loops (fig. 1). In the area of the loops the compression loads are transmitted to the grout fill. A tension load acts vertically to the plane of the loop, which must be taken up by a vertical reinforcement bar, as shown in fig. 2.

Assuming a global safety factor $\gamma = 3.0$ and a minimum breaking load of the cable of $F_{\text{min}} = 22.7 \, \text{kN}$ the maximum applicable tension load $Z_{\text{max,l}}$ is $15.1 \, \text{kN}$ per wire loop.

$$Z_{\text{max,l}} = \frac{F_{\text{min}} \cdot 2}{\gamma} = \frac{22.7 \cdot 2}{3.0} = 15.1 \, \text{kN}$$

Considering the serviceability limit state we recommend to specify a load not exceeding $10 \, \text{kN}$ per loop (characteristic value). Experimental tests, which have been carried out with concrete grade C30/37 and a clearance between the HLB S elements of 11 cm in the longitudinal direction of the joint, resulted in a widening of the joint of 0.4 mm at this load.

2. Transfer of shear loads parallel to the joint

Shear loads can act parallel to the joint (fig. 3). A model for the transfer of these shear loads across the joint is shown in fig. 4. Therein the shear load acting in the joint is divided into a tension and a compression strut. The values of the tension and compression loads depend on the angle θ.

HALFEN Single Loop Box: According to the model scheme shown in fig. 4 a strut is formed between the recess boxes of the precast elements facing each other. The tension load is transferred to the overlapping cable loops.
3. Transfer of shear loads perpendicular to the joint

For the transfer of shear loads perpendicular to the joint (fig. 5) the geometry of the joint is particularly important. It can be assumed, that between the concrete flanks of the opposing precast elements a strut is formed according to fig. 6. The tension load is transferred to the overlapping cable loops.

It is recommended to carry out the calculation in the same way as for unreinforced slab joints, wherein the geometry is to be considered.

Notes for fire protection

Regarding the fire protection the relevant regulations apply.

The cable loop of the HALFEN HLB Loop Box consists of a steel wire strength class 1770. It is commonly used in reinforced concrete structures. Therefore the regulations for reinforcement steel and for tensioning cables are to be observed.

In this connection the breaking stresses of the reinforcement steel and the cable loops at high temperatures have to be checked.

Furthermore, different demands are made on the centre distances for reinforcement steel and for tensioning cables. The minimum dimensions for the centre distances and further details of the constructive design depend on the required fire resistance class.
Joint for in-situ grout fill

The joint for the in-situ grout fill has to be provided throughout the entire height of the concrete element. An adequate joint depth must be provided, depending on the length of the cable loop. It must be ensured that:
- the cable loops have a sufficient overlapping and that
- popped up loops have enough space without abutting.

After setting up the precast elements, a reinforcement bar (reinforcing steel B 500A) diam. 12 mm must be inserted into the joint through the overlapping cable loops. For applications designed as constructive junction it is recommended to provide U-shaped stirrups (reinforcing steel grade B 500A) diam. 8 mm, so that an overlap junction between the tail of the cable loops and the U-shaped stirrup is created as with the officially approved HLB Loop Boxes.

Reinforcement

- Examples for HLB Loop Box applications designed as constructive junction:
 - surface area reinforcement
 - centric area reinforcement
 - without area reinforcement
HALFEN HLB LOOP BOX

Installation instructions

Installation tolerances according to the official approvals, recommended also for applications designed as constructive junctions

• horizontal

Regular joint: 20 mm

Minimum joint: 10 mm

Maximum joint: 40 mm

• vertical

Regular arrangement: loops at the same level

Vertical tolerance: maximum 20 mm

Bar B 500 A, diam. 12 mm

A vertical tolerance of maximum 20 mm is permissible.

Wire binding of the cable loops is not compulsory.

Note: Welding on HLB Loop Box elements is not permitted.

On the construction site:

1. State of delivery with closed HLB Loop Box

2. Remove the HLB Loop Box cover: strike-in the pre-punched hole and pull out the steel cover, using an appropriate tool, e.g. a carpenters hammer. Remove end covers (adhesive tape).

If HLB Spacers are incorporated, they must be removed, using an appropriate tool.

3. Setting up the precast element. The wire loops must stick out perpendicular to the joint, and after deflection during the setting up they should spring back into this position.

4. Insert the reinforcement bar diam. 12 mm and encase the joint with appropriate formwork. Prepare the HLB Mix joint grout according to the manufacturers instructions. The maximum grouting height is 3.5 m. HLB Mix joint grout is capable of flowing, no additional compaction is required.

Dry grout per meter joint length [kg/m]: joint: 2 cm

<table>
<thead>
<tr>
<th>Wall thickness [cm]</th>
<th>HLB M-50 + HLB M-50</th>
<th>HLB M-20+ HLB M-100</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>16.7</td>
<td>22.1</td>
</tr>
<tr>
<td>16</td>
<td>17.5</td>
<td>22.9</td>
</tr>
<tr>
<td>18</td>
<td>18.3</td>
<td>23.7</td>
</tr>
<tr>
<td>20</td>
<td>19.1</td>
<td>24.5</td>
</tr>
<tr>
<td>22</td>
<td>19.9</td>
<td>25.3</td>
</tr>
<tr>
<td>24</td>
<td>20.7</td>
<td>26.1</td>
</tr>
<tr>
<td>26</td>
<td>21.5</td>
<td>26.9</td>
</tr>
</tbody>
</table>

© 2020 · HLB 16E · www.halfen.com
HALFEN HLB LOOP BOX

In-situ joint grout filling

HALFEN HLB Mix joint grout for producing a load bearing joint fill without further compaction

According to the official approval HLB Mix grout must be used for filling the joint. Mixing and applying the grout should be carried out with reasonable care, the manufacturers instructions are to be observed.

Properties of the HLB Mix joint grout:
- Graining 0…5 mm
- Consistency: capable of flowing, subsequent compaction is not necessary
- Maximum workability time at 20°C: 90 min, pumpable
- Guide value for the cube compression strength (150 mm), tested at 20°C:
 - after 24 hours: minimum 40 N/mm²
 - after 28 days: compression strength grade C60/75
- shrinkage class SKVB II
- resistant to frost and de-icing salt

Mixing:
Mix the HLB Mix joint grout with approx. 2.5 l to 3.0 l of water. Pour the water into the compulsory Mixer, leaving a remaining quantity, add the grout, and after a short period of mixing pour in the remaining quantity of water and mix for at least 5 minutes.

Substrate:
The substrate must be well cleaned. Loose particles which prevent adhesion, i.e. cement sludge, moulding grease etc. must be completely removed by air blasting or similar treatment. It must have a minimum breakaway resistance of ≥1.5N/mm² and sufficient bearing strength. The substrate must be sufficiently pre-watered!

Joint moulding, additional reinforcement bar:
Usually a spacing is left between the edges of the abutting precast elements. After connecting the loops of the HLB Loop Boxes with a reinforcement bar, the joints between the 2 elements are encased with formwork. For high elements or if the formwork allows no high pressure, the grout casting should be carried out in 2 steps.

Filling the joint:
The grout is poured in continuously up to the required filling height. Observe the height limit: the maximum height for pouring the HLB grout mix is limited to a maximum of 3.50 m, if necessary the grout must be filled in using a hose, or the height of the casting channel must be limited accordingly. The compaction may be facilitated using an internal spud vibrator or by poking. The temperatures of the environment and the building structure should be not below +5°C during the preparation of the grout and until 36 hours after pouring.
HALFEN HLB LOOP BOX

Order form

☐ Enquiry ☐ Order
(Please mark your option)

Please send back to us via FAX
- Select contact data for your subsidiary
 from this catalogue’s last page -

Construction project:

<table>
<thead>
<tr>
<th>Company</th>
<th>Street</th>
<th>Postcode / City</th>
<th>Contact person</th>
<th>Phone</th>
<th>Fax</th>
<th>E-Mail</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sum: plus packing and shipping costs EUR

Delivery address:
(only if the delivery address is not identical with the ordering address)

Date, signature

© 2020 · HLB 16E · www.halfen.com
Innovative engineered products and construction solutions that allow the industry to build safer, stronger and faster.
Worldwide contacts for Leviat:

<table>
<thead>
<tr>
<th>Country</th>
<th>Address</th>
<th>Phone</th>
<th>Email</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australia</td>
<td>Leviat 98 Kurrajong Avenue, Mount druitt Sydney, NSW 2770</td>
<td>+61 2 8888 3100</td>
<td>info.au@leviat.com</td>
</tr>
<tr>
<td>Austria</td>
<td>Leviat Leonard-Bernstein-Str. 10 Saturn Tower, 1220 Wien</td>
<td>+43 1 259 6770</td>
<td>info.at@leviat.com</td>
</tr>
<tr>
<td>Belgium</td>
<td>Leviat Borkelstraat 131 2900 Schoten</td>
<td>+32 3 658 07 20</td>
<td>info.be@leviat.com</td>
</tr>
<tr>
<td>China</td>
<td>Leviat Room 601 Tower D, Vantone Centre No. A6 Chao Yang Men Wai Street Chaoyang District Beijing P.R. China 100020</td>
<td>+86 10 5907 3200</td>
<td>info.cn@leviat.com</td>
</tr>
<tr>
<td>Czech Republic</td>
<td>Leviat Business Center Šafránkova Šafránkova 1238/1 155 00 Praha 5</td>
<td>+420 311 690 060</td>
<td>info.cz@leviat.com</td>
</tr>
<tr>
<td>France</td>
<td>Leviat 18, rue Goubet 75019 Paris</td>
<td>+33 1 44 52 31 00</td>
<td>info.fr@leviat.com</td>
</tr>
<tr>
<td>Germany</td>
<td>Leviat Liebigstrasse 14 40764 Langenfeld</td>
<td>+49 2173 970 0</td>
<td>info.de@leviat.com</td>
</tr>
<tr>
<td>Italy</td>
<td>Leviat Via F.Li Bronzetti N° 28 24124 Bergamo</td>
<td>+39 035 0760711</td>
<td>info.it@leviat.com</td>
</tr>
<tr>
<td>Malaysia</td>
<td>Leviat 28 Jalan Anggerik Mokara 31/59 Kota Kemuning, 40460 Shah Alam Selangor</td>
<td>+603 5122 4182</td>
<td>info.my@leviat.com</td>
</tr>
<tr>
<td>Netherlands</td>
<td>Leviat Oostermaat 3 7623 C5 Borne</td>
<td>+31 267 14 49</td>
<td>info.nl@leviat.com</td>
</tr>
<tr>
<td>New Zealand</td>
<td>Leviat 2/19 Nuttall Drive, Hillsborough, Christchurch 8022</td>
<td>+64 3 376 5205</td>
<td>info.nz@leviat.com</td>
</tr>
<tr>
<td>Norway</td>
<td>Leviat Vestre Svanholmen 5 4313 Sandnes</td>
<td>+47 51 82 34 00</td>
<td>info.no@leviat.com</td>
</tr>
<tr>
<td>Poland</td>
<td>Leviat Ul. Obornicka 287 60-601 Poznan</td>
<td>+48 61 622 14 14</td>
<td>info.pl@leviat.com</td>
</tr>
<tr>
<td>Singapore</td>
<td>Leviat 14 Benoi Crescent Singapore 629977</td>
<td>+65 6266 6802</td>
<td>info.sg@leviat.com</td>
</tr>
<tr>
<td>Spain</td>
<td>Leviat Poligono Industrial Santa Ana c/ Ignacio Zuloaga, 20 28522 Rivas-Vaciamadrid</td>
<td>+34 91 632 18 40</td>
<td>info.es@leviat.com</td>
</tr>
<tr>
<td>Sweden</td>
<td>Leviat Vågursgatan 5 412 50 Göteborg</td>
<td>+46 31 98 58 00</td>
<td>info.se@leviat.com</td>
</tr>
<tr>
<td>Switzerland</td>
<td>Leviat Hertistrasse 25 8304 Wallisellen</td>
<td>+41 44 849 78 78</td>
<td>info.ch@leviat.com</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>Leviat A1/A2 Portland Close Houghton Regis LUS 5 AW 1582 470 300</td>
<td>+44 1582 470 300</td>
<td>info.uk@leviat.com</td>
</tr>
<tr>
<td>United States of America</td>
<td>Leviat 6467 S Falkenburg Rd. Riverview, FL 33578</td>
<td>(800) 423-9160</td>
<td>info.us@leviat.us</td>
</tr>
<tr>
<td>For countries not listed</td>
<td>Email: info@leviat.com</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes regarding this catalogue
© Protected by copyright. The construction applications and details provided in this publication are indicative only. In every case, project working details should be entrusted to appropriately qualified and experienced persons. Whilst every care has been exercised in the preparation of this publication to ensure that any advice, recommendations or information is accurate, no liability or responsibility of any kind is accepted by Leviat for inaccuracies or printing errors. Technical and design changes are reserved. With a policy of continuous product development, Leviat reserves the right to modify product design and specification at any time.